Diffusion of a virus along a random graph
We consider an SIR epidemic model propagating on a Configuration Model network, where the degree distribution of the vertices is given and where the edges are randomly matched. The evolution of the epidemic is summed up into three measure-valued equations that describe the degrees of the susceptible individuals and the number of edges from an in- fectious or removed individual to the set of susceptibles. These three degree distributions are sufficient to describe the course of the disease. The limit in large population is investigated. As a corollary, this provides a rigorous proof of the equations obtained by Volz (2008).